Telegram Group & Telegram Channel
✔️ Как избежать ловушки автоматизации при масштабировании Low-Code AI

Платформы с Low-Code AI обещают быстрое внедрение без строчки кода. Но под нагрузкой они часто не справляются:
📌 Медленные ответы
📌 Перепутанные сессии
📌 Никакой прозрачности при сбоях

Вот как заставить low-code работать в реальном масштабе:

1⃣ Планируйте масштабирование заранее

Используйте сервисы с автоскейлингом (например, Azure Kubernetes Service, AWS SageMaker Pipelines). Избегайте базовых конфигураций — они не выдерживают нагрузку.

2⃣ Управляйте сессиями вручную

Очищайте данные пользователя после каждого запроса. Не полагайтесь на сохранённое состояние, если не контролируете его.

3⃣ Мониторьте не только метрики модели

Следите за:
— Временем ответа API
— Процентом ошибок
— Использованием ресурсов
— Добавьте бизнес-метрики (например, конверсия, влияние на продажи).

4⃣ Балансировка и авто-масштабирование

Размещайте модели через балансировщики нагрузки. Настройте масштабирование по CPU или задержке.

5⃣ Версионируйте и тестируйте

Каждое обновление — новая версия. Тестируйте в staging и проводите A/B-тесты.

Когда low-code — хороший выбор
✔️ Внутренняя аналитика
✔️ Обучающие проекты
✔️ Прототипы для неразработчиков

📌 Low-code не значит «всё само заработает». Масштаб требует инженерного подхода.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6461
Create:
Last Update:

✔️ Как избежать ловушки автоматизации при масштабировании Low-Code AI

Платформы с Low-Code AI обещают быстрое внедрение без строчки кода. Но под нагрузкой они часто не справляются:
📌 Медленные ответы
📌 Перепутанные сессии
📌 Никакой прозрачности при сбоях

Вот как заставить low-code работать в реальном масштабе:

1⃣ Планируйте масштабирование заранее

Используйте сервисы с автоскейлингом (например, Azure Kubernetes Service, AWS SageMaker Pipelines). Избегайте базовых конфигураций — они не выдерживают нагрузку.

2⃣ Управляйте сессиями вручную

Очищайте данные пользователя после каждого запроса. Не полагайтесь на сохранённое состояние, если не контролируете его.

3⃣ Мониторьте не только метрики модели

Следите за:
— Временем ответа API
— Процентом ошибок
— Использованием ресурсов
— Добавьте бизнес-метрики (например, конверсия, влияние на продажи).

4⃣ Балансировка и авто-масштабирование

Размещайте модели через балансировщики нагрузки. Настройте масштабирование по CPU или задержке.

5⃣ Версионируйте и тестируйте

Каждое обновление — новая версия. Тестируйте в staging и проводите A/B-тесты.

Когда low-code — хороший выбор
✔️ Внутренняя аналитика
✔️ Обучающие проекты
✔️ Прототипы для неразработчиков

📌 Low-code не значит «всё само заработает». Масштаб требует инженерного подхода.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6461

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from cn


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA